题目描述

(通过次数55,752 | 提交次数132,044,通过率42.22%)

表:Trips
+-------------+----------+
| Column Name | Type |
+-------------+----------+
| id | int |
| client_id | int |
| driver_id | int |
| city_id | int |
| status | enum |
| request_at | date |
+-------------+----------+
id 是这张表的主键。
这张表中存所有出租车的行程信息。每段行程有唯一 id ,其中 client_id 和 driver_id 是 Users 表中 users_id 的外键。
status 是一个表示行程状态的枚举类型,枚举成员为('completed', 'cancelled_by_driver', 'cancelled_by_client') 。
表:Users
+-------------+----------+
| Column Name | Type |
+-------------+----------+
| users_id | int |
| banned | enum |
| role | enum |
+-------------+----------+
users_id 是这张表的主键。
这张表中存所有用户,每个用户都有一个唯一的 users_id ,role 是一个表示用户身份的枚举类型,枚举成员为 ('client', 'driver', 'partner') 。
banned 是一个表示用户是否被禁止的枚举类型,枚举成员为 ('Yes', 'No') 。
取消率 的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)。
写一段 SQL 语句查出"2013-10-01"至"2013-10-03"期间非禁止用户(乘客和司机都必须未被禁止)的取消率。非禁止用户即 banned 为 No 的用户,禁止用户即 banned 为 Yes 的用户。
返回结果表中的数据可以按任意顺序组织。其中取消率 Cancellation Rate 需要四舍五入保留 两位小数 。
查询结果格式如下例所示。
示例:
输入:
Trips 表:
+----+-----------+-----------+---------+---------------------+------------+
| id | client_id | driver_id | city_id | status | request_at |
+----+-----------+-----------+---------+---------------------+------------+
| 1 | 1 | 10 | 1 | completed | 2013-10-01 |
| 2 | 2 | 11 | 1 | cancelled_by_driver | 2013-10-01 |
| 3 | 3 | 12 | 6 | completed | 2013-10-01 |
| 4 | 4 | 13 | 6 | cancelled_by_client | 2013-10-01 |
| 5 | 1 | 10 | 1 | completed | 2013-10-02 |
| 6 | 2 | 11 | 6 | completed | 2013-10-02 |
| 7 | 3 | 12 | 6 | completed | 2013-10-02 |
| 8 | 2 | 12 | 12 | completed | 2013-10-03 |
| 9 | 3 | 10 | 12 | completed | 2013-10-03 |
| 10 | 4 | 13 | 12 | cancelled_by_driver | 2013-10-03 |
+----+-----------+-----------+---------+---------------------+------------+
Users 表:
+----------+--------+--------+
| users_id | banned | role |
+----------+--------+--------+
| 1 | No | client |
| 2 | Yes | client |
| 3 | No | client |
| 4 | No | client |
| 10 | No | driver |
| 11 | No | driver |
| 12 | No | driver |
| 13 | No | driver |
+----------+--------+--------+
输出:
+------------+-------------------+
| Day | Cancellation Rate |
+------------+-------------------+
| 2013-10-01 | 0.33 |
| 2013-10-02 | 0.00 |
| 2013-10-03 | 0.50 |
+------------+-------------------+
解释:
2013-10-01
- 共有 4 条请求,其中 2 条取消。
- 然而,id=2 的请求是由禁止用户(user_id=2)发出的,所以计算时应当忽略它。
- 因此,总共有 3 条非禁止请求参与计算,其中 1 条取消。
- 取消率为 (1 / 3) = 0.33
2013-10-02
- 共有 3 条请求,其中 0 条取消。
- 然而,id=6 的请求是由禁止用户发出的,所以计算时应当忽略它。
- 因此,总共有 2 条非禁止请求参与计算,其中 0 条取消。
- 取消率为 (0 / 2) = 0.00
2013-10-03
- 共有 3 条请求,其中 1 条取消。
- 然而,id=8 的请求是由禁止用户发出的,所以计算时应当忽略它。
- 因此,总共有 2 条非禁止请求参与计算,其中 1 条取消。
- 取消率为 (1 / 2) = 0.50
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/trips-and-users
表:Trips +-------------+----------+ | Column Name | Type | +-------------+----------+ | id | int | | client_id | int | | driver_id | int | | city_id | int | | status | enum | | request_at | date | +-------------+----------+ id 是这张表的主键。 这张表中存所有出租车的行程信息。每段行程有唯一 id ,其中 client_id 和 driver_id 是 Users 表中 users_id 的外键。 status 是一个表示行程状态的枚举类型,枚举成员为('completed', 'cancelled_by_driver', 'cancelled_by_client') 。 表:Users +-------------+----------+ | Column Name | Type | +-------------+----------+ | users_id | int | | banned | enum | | role | enum | +-------------+----------+ users_id 是这张表的主键。 这张表中存所有用户,每个用户都有一个唯一的 users_id ,role 是一个表示用户身份的枚举类型,枚举成员为 ('client', 'driver', 'partner') 。 banned 是一个表示用户是否被禁止的枚举类型,枚举成员为 ('Yes', 'No') 。 取消率 的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)。 写一段 SQL 语句查出"2013-10-01"至"2013-10-03"期间非禁止用户(乘客和司机都必须未被禁止)的取消率。非禁止用户即 banned 为 No 的用户,禁止用户即 banned 为 Yes 的用户。 返回结果表中的数据可以按任意顺序组织。其中取消率 Cancellation Rate 需要四舍五入保留 两位小数 。 查询结果格式如下例所示。 示例: 输入: Trips 表: +----+-----------+-----------+---------+---------------------+------------+ | id | client_id | driver_id | city_id | status | request_at | +----+-----------+-----------+---------+---------------------+------------+ | 1 | 1 | 10 | 1 | completed | 2013-10-01 | | 2 | 2 | 11 | 1 | cancelled_by_driver | 2013-10-01 | | 3 | 3 | 12 | 6 | completed | 2013-10-01 | | 4 | 4 | 13 | 6 | cancelled_by_client | 2013-10-01 | | 5 | 1 | 10 | 1 | completed | 2013-10-02 | | 6 | 2 | 11 | 6 | completed | 2013-10-02 | | 7 | 3 | 12 | 6 | completed | 2013-10-02 | | 8 | 2 | 12 | 12 | completed | 2013-10-03 | | 9 | 3 | 10 | 12 | completed | 2013-10-03 | | 10 | 4 | 13 | 12 | cancelled_by_driver | 2013-10-03 | +----+-----------+-----------+---------+---------------------+------------+ Users 表: +----------+--------+--------+ | users_id | banned | role | +----------+--------+--------+ | 1 | No | client | | 2 | Yes | client | | 3 | No | client | | 4 | No | client | | 10 | No | driver | | 11 | No | driver | | 12 | No | driver | | 13 | No | driver | +----------+--------+--------+ 输出: +------------+-------------------+ | Day | Cancellation Rate | +------------+-------------------+ | 2013-10-01 | 0.33 | | 2013-10-02 | 0.00 | | 2013-10-03 | 0.50 | +------------+-------------------+ 解释: 2013-10-01: - 共有 4 条请求,其中 2 条取消。 - 然而,id=2 的请求是由禁止用户(user_id=2)发出的,所以计算时应当忽略它。 - 因此,总共有 3 条非禁止请求参与计算,其中 1 条取消。 - 取消率为 (1 / 3) = 0.33 2013-10-02: - 共有 3 条请求,其中 0 条取消。 - 然而,id=6 的请求是由禁止用户发出的,所以计算时应当忽略它。 - 因此,总共有 2 条非禁止请求参与计算,其中 0 条取消。 - 取消率为 (0 / 2) = 0.00 2013-10-03: - 共有 3 条请求,其中 1 条取消。 - 然而,id=8 的请求是由禁止用户发出的,所以计算时应当忽略它。 - 因此,总共有 2 条非禁止请求参与计算,其中 1 条取消。 - 取消率为 (1 / 2) = 0.50 来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/trips-and-users
表:Trips
+-------------+----------+
| Column Name | Type     |
+-------------+----------+
| id          | int      |
| client_id   | int      |
| driver_id   | int      |
| city_id     | int      |
| status      | enum     |
| request_at  | date     |     
+-------------+----------+
id 是这张表的主键。
这张表中存所有出租车的行程信息。每段行程有唯一 id ,其中 client_id 和 driver_id 是 Users 表中 users_id 的外键。
status 是一个表示行程状态的枚举类型,枚举成员为('completed', 'cancelled_by_driver', 'cancelled_by_client') 。

表:Users
+-------------+----------+
| Column Name | Type     |
+-------------+----------+
| users_id    | int      |
| banned      | enum     |
| role        | enum     |
+-------------+----------+
users_id 是这张表的主键。
这张表中存所有用户,每个用户都有一个唯一的 users_id ,role 是一个表示用户身份的枚举类型,枚举成员为 ('client', 'driver', 'partner') 。
banned 是一个表示用户是否被禁止的枚举类型,枚举成员为 ('Yes', 'No') 。

取消率 的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)。
写一段 SQL 语句查出"2013-10-01"至"2013-10-03"期间非禁止用户(乘客和司机都必须未被禁止)的取消率。非禁止用户即 banned 为 No 的用户,禁止用户即 banned 为 Yes 的用户。
返回结果表中的数据可以按任意顺序组织。其中取消率 Cancellation Rate 需要四舍五入保留 两位小数 。

查询结果格式如下例所示。
示例:
输入: 
Trips 表:
+----+-----------+-----------+---------+---------------------+------------+
| id | client_id | driver_id | city_id | status              | request_at |
+----+-----------+-----------+---------+---------------------+------------+
| 1  | 1         | 10        | 1       | completed           | 2013-10-01 |
| 2  | 2         | 11        | 1       | cancelled_by_driver | 2013-10-01 |
| 3  | 3         | 12        | 6       | completed           | 2013-10-01 |
| 4  | 4         | 13        | 6       | cancelled_by_client | 2013-10-01 |
| 5  | 1         | 10        | 1       | completed           | 2013-10-02 |
| 6  | 2         | 11        | 6       | completed           | 2013-10-02 |
| 7  | 3         | 12        | 6       | completed           | 2013-10-02 |
| 8  | 2         | 12        | 12      | completed           | 2013-10-03 |
| 9  | 3         | 10        | 12      | completed           | 2013-10-03 |
| 10 | 4         | 13        | 12      | cancelled_by_driver | 2013-10-03 |
+----+-----------+-----------+---------+---------------------+------------+

Users 表:
+----------+--------+--------+
| users_id | banned | role   |
+----------+--------+--------+
| 1        | No     | client |
| 2        | Yes    | client |
| 3        | No     | client |
| 4        | No     | client |
| 10       | No     | driver |
| 11       | No     | driver |
| 12       | No     | driver |
| 13       | No     | driver |
+----------+--------+--------+
输出:
+------------+-------------------+
| Day        | Cancellation Rate |
+------------+-------------------+
| 2013-10-01 | 0.33              |
| 2013-10-02 | 0.00              |
| 2013-10-03 | 0.50              |
+------------+-------------------+
解释:
2013-10-01:
  - 共有 4 条请求,其中 2 条取消。
  - 然而,id=2 的请求是由禁止用户(user_id=2)发出的,所以计算时应当忽略它。
  - 因此,总共有 3 条非禁止请求参与计算,其中 1 条取消。
  - 取消率为 (1 / 3) = 0.33
2013-10-02:
  - 共有 3 条请求,其中 0 条取消。
  - 然而,id=6 的请求是由禁止用户发出的,所以计算时应当忽略它。
  - 因此,总共有 2 条非禁止请求参与计算,其中 0 条取消。
  - 取消率为 (0 / 2) = 0.00
2013-10-03:
  - 共有 3 条请求,其中 1 条取消。
  - 然而,id=8 的请求是由禁止用户发出的,所以计算时应当忽略它。
  - 因此,总共有 2 条非禁止请求参与计算,其中 1 条取消。
  - 取消率为 (1 / 2) = 0.50

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/trips-and-users
//测试数据
Create table If Not Exists Trips (id int, client_id int, driver_id int, city_id int, status ENUM('completed', 'cancelled_by_driver', 'cancelled_by_client'), request_at varchar(50));
Create table If Not Exists Users (users_id int, banned varchar(50), role ENUM('client', 'driver', 'partner'));
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('1', '1', '10', '1', 'completed', '2013-10-01');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('2', '2', '11', '1', 'cancelled_by_driver', '2013-10-01');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('3', '3', '12', '6', 'completed', '2013-10-01');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('4', '4', '13', '6', 'cancelled_by_client', '2013-10-01');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('5', '1', '10', '1', 'completed', '2013-10-02');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('6', '2', '11', '6', 'completed', '2013-10-02');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('7', '3', '12', '6', 'completed', '2013-10-02');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('8', '2', '12', '12', 'completed', '2013-10-03');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('9', '3', '10', '12', 'completed', '2013-10-03');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('10', '4', '13', '12', 'cancelled_by_driver', '2013-10-03');
insert into Users (users_id, banned, role) values ('1', 'No', 'client');
insert into Users (users_id, banned, role) values ('2', 'Yes', 'client');
insert into Users (users_id, banned, role) values ('3', 'No', 'client');
insert into Users (users_id, banned, role) values ('4', 'No', 'client');
insert into Users (users_id, banned, role) values ('10', 'No', 'driver');
insert into Users (users_id, banned, role) values ('11', 'No', 'driver');
insert into Users (users_id, banned, role) values ('12', 'No', 'driver');
insert into Users (users_id, banned, role) values ('13', 'No', 'driver');
//测试数据 Create table If Not Exists Trips (id int, client_id int, driver_id int, city_id int, status ENUM('completed', 'cancelled_by_driver', 'cancelled_by_client'), request_at varchar(50)); Create table If Not Exists Users (users_id int, banned varchar(50), role ENUM('client', 'driver', 'partner')); insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('1', '1', '10', '1', 'completed', '2013-10-01'); insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('2', '2', '11', '1', 'cancelled_by_driver', '2013-10-01'); insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('3', '3', '12', '6', 'completed', '2013-10-01'); insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('4', '4', '13', '6', 'cancelled_by_client', '2013-10-01'); insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('5', '1', '10', '1', 'completed', '2013-10-02'); insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('6', '2', '11', '6', 'completed', '2013-10-02'); insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('7', '3', '12', '6', 'completed', '2013-10-02'); insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('8', '2', '12', '12', 'completed', '2013-10-03'); insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('9', '3', '10', '12', 'completed', '2013-10-03'); insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('10', '4', '13', '12', 'cancelled_by_driver', '2013-10-03'); insert into Users (users_id, banned, role) values ('1', 'No', 'client'); insert into Users (users_id, banned, role) values ('2', 'Yes', 'client'); insert into Users (users_id, banned, role) values ('3', 'No', 'client'); insert into Users (users_id, banned, role) values ('4', 'No', 'client'); insert into Users (users_id, banned, role) values ('10', 'No', 'driver'); insert into Users (users_id, banned, role) values ('11', 'No', 'driver'); insert into Users (users_id, banned, role) values ('12', 'No', 'driver'); insert into Users (users_id, banned, role) values ('13', 'No', 'driver');
//测试数据
Create table If Not Exists Trips (id int, client_id int, driver_id int, city_id int, status ENUM('completed', 'cancelled_by_driver', 'cancelled_by_client'), request_at varchar(50));
Create table If Not Exists Users (users_id int, banned varchar(50), role ENUM('client', 'driver', 'partner'));

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('1', '1', '10', '1', 'completed', '2013-10-01');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('2', '2', '11', '1', 'cancelled_by_driver', '2013-10-01');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('3', '3', '12', '6', 'completed', '2013-10-01');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('4', '4', '13', '6', 'cancelled_by_client', '2013-10-01');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('5', '1', '10', '1', 'completed', '2013-10-02');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('6', '2', '11', '6', 'completed', '2013-10-02');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('7', '3', '12', '6', 'completed', '2013-10-02');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('8', '2', '12', '12', 'completed', '2013-10-03');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('9', '3', '10', '12', 'completed', '2013-10-03');
insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('10', '4', '13', '12', 'cancelled_by_driver', '2013-10-03');

insert into Users (users_id, banned, role) values ('1', 'No', 'client');
insert into Users (users_id, banned, role) values ('2', 'Yes', 'client');
insert into Users (users_id, banned, role) values ('3', 'No', 'client');
insert into Users (users_id, banned, role) values ('4', 'No', 'client');
insert into Users (users_id, banned, role) values ('10', 'No', 'driver');
insert into Users (users_id, banned, role) values ('11', 'No', 'driver');
insert into Users (users_id, banned, role) values ('12', 'No', 'driver');
insert into Users (users_id, banned, role) values ('13', 'No', 'driver');

解题思路

这虽然是一道困难题,但考查的都是常规的写法。

题目要求,只处理client和driver都是未被禁止的Trips,并且只处理’2013-10-01′ 到 ‘2013-10-03’这个时间段内的Trips。然后按天计算出Trips的总数和被取消的数量,两者相除,得出取消率。

那么,我们可以通过如下几个步骤来实现:

**第一步**:找出未被禁止的Users;

可以直接使用where条件过滤。

**第二步**:筛选出client和driver都是未被禁止的Trips;

使用两个where条件过滤。

**第三步**:过滤出’2013-10-01′ 到 ‘2013-10-03’这个时间段内的Trips;

可以直接使用where条件过滤。

**第四步**:按Trips的request_at分组统计总数和被取消的数量,然后相除,并对结果做四舍五入,取2位小数;

使用group by+count获取总数。在count时,配合case when子句,获取被取消的数量,然后两相两除。对相除的结果,使用四舍五入函数round进行处理。

参考SQL

未特别说明的情况下,参考SQL为基于MySQL8.0实现。
with
tmp1 as (
select users_id from Users where banned = 'No'
)
select
b.request_at as `Day`,
round(
count(case when b.status in ('cancelled_by_driver','cancelled_by_client') then 1 else null end)
/
count(1)
,2
) as `Cancellation Rate`
from Trips b
where b.request_at between '2013-10-01' and '2013-10-03'
and b.client_id in (select users_id from tmp1)
and b.driver_id in (select users_id from tmp1)
group by b.request_at;
with tmp1 as ( select users_id from Users where banned = 'No' ) select b.request_at as `Day`, round( count(case when b.status in ('cancelled_by_driver','cancelled_by_client') then 1 else null end) / count(1) ,2 ) as `Cancellation Rate` from Trips b where b.request_at between '2013-10-01' and '2013-10-03' and b.client_id in (select users_id from tmp1) and b.driver_id in (select users_id from tmp1) group by b.request_at;
with
tmp1 as (
    select users_id from Users where banned = 'No'
)
select
    b.request_at as `Day`,
    round(
        count(case when b.status in ('cancelled_by_driver','cancelled_by_client') then 1 else null end)
        /
        count(1)
        ,2
    ) as `Cancellation Rate`
from Trips b
where b.request_at between '2013-10-01' and '2013-10-03'
and b.client_id in (select users_id from tmp1)
and b.driver_id in (select users_id from tmp1)
group by b.request_at;
picture loss